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A B S T R A C T

Combination is an effective way to improve tourism forecasting accuracy. However, empirical
evidence is limited to point forecasts. Given that interval forecasts can provide more comprehen-
sive information, it is important to consider both point and interval forecasts for decision-making.
Using Hong Kong tourism demand as an empirical case, this study is the first to examine if and how
the combination can improve interval forecasting accuracy for tourism demand. Winkler scores are
employed to measure interval forecasting performance. Empirical results show that combination
improves the accuracy of tourism interval forecasting for different forecasting horizons. The
findings provide government and industry practitioners with guidelines for producing accurate
interval forecasts that benefit their policy-making for a wide array of applications in practice.

This article also launches the Annals of Tourism Research Curated Collection on Tourism
Demand Forecast, a special selection of research in this field.

Introduction

Producing accurate tourism demand forecasts is of continuing interest to market practitioners. For example, hotels and airlines
use demand forecasts to formulate their pricing and revenue management strategies; event organisers use them to allocate their
resources more efficiently when organising festivals; governments use them to evaluate the feasibility of infrastructure investment. In
recent years tourism demand forecasting has received even more attention from industry practitioners because of the continuously
growing and more dynamic markets, decision makers' increasing realization of the importance of quantitative evidence for policy
making, and the development of internet technology-based big data (Li & Wu, 2019). Due to the important role of tourism demand
forecasting in facilitating business planning and policy formulation, a large number of empirical studies examine the accuracy of
tourism demand forecasts using various forecasting techniques. The technique of forecast combination aims to combine the forecasts
generated by a certain number of single models based on a certain weighting scheme. Empirical evidence indicates that forecast
combination is an effective tool for improving forecast accuracy (Shen, Li, & Song, 2011; Song, Witt, Wong, & Wu, 2009; Wong, Song,
Witt, & Wu, 2007).

According to a thorough review of the tourism forecasting literature (Wu, Song, & Shen, 2017), the majority of studies focus on
point forecasting over interval forecasting: the former uses a single value to present the forecast, while the latter uses a range of
values as the forecast outcome. In practice, point forecasts receive more attention, perhaps because they are easy to understand and
their policy-making use is straightforward by providing a single value for a future situation. However, solely considering point
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forecasts is sometimes not enough for policy-making because they do not include any information on the variability associated with
the forecasts. The use of both point forecasts and interval forecasts can provide more comprehensive and useful information for
decision-making. For example, if a hotel has a point forecast of the rooms occupied on a future day, the hotel can predict and evaluate
the occupancy rate and revenue/profit for that day; if the hotel also has interval forecasts, it knows the ranges that their occupancy
rates and revenues may fall within under different confidence levels, and it can therefore formulate relevant pricing and marketing
strategies. It is important for decision-makers to realise the importance of interval forecasts and to apply both point and interval
forecasts as the foundation for policy-making. Accordingly, scholars should also explore effective ways to produce accurate interval
forecasts. To the best of our knowledge, no study in the tourism literature has yet examined the performance of combining interval
forecasts.

This study aims to fill the above gap by examining whether the combination forecasting technique can improve the accuracy of
tourism demand interval forecasts in an empirical setting, considering Hong Kong's inbound tourism demand from its eight key
source markets. Combined intervals are obtained by combining different density forecasts generated by eight individual time-series or
econometric models. Two forecasting horizons of 1-step and 4-step ahead are examined separately. This study seeks to answer three
research questions: how to combine interval forecasts? How can the accuracy of interval forecasts be evaluated effectively? Can
combined interval forecasts improve forecasting accuracy over single forecasts?

The rest of the paper is structured as follows. Section 2 reviews the literature on tourism interval forecasting, tourism combination
forecasting, interval forecast combination and forecasting accuracy measurement. Section 3 focuses on the methodology by in-
troducing eight individual models, the interval combination technique, accuracy measures and data and variables for the empirical
analysis. Section 4 presents the empirical results. Section 5 concludes the study and identifies future research directions.

Literature review

Tourism interval forecasting

Point estimation and point forecasting dominate the recent tourism forecasting literature (Wu et al., 2017). A point forecast uses a
single value to forecast tourism demand for a certain point in the future. Most tourism forecasting studies use forecasting techniques
such as time series or econometric models to produce point forecasts for different future time horizons. Recent examples include such
as Athanasopoulos, Song, and Sun (2018) and Chen, Li, Wu, and Shen (2019). In contrast, interval forecasting provides a range
instead of a single value to forecast at a given confidence level (or probability). As point forecasts do not provide information about
the degree of variability or uncertainty of the forecast, interval forecasts are considered an effective supplement. Interval forecasts
provide information not only on the central tendency of the forecast, but also on the future variation by constructing a range of values
at a certain confidence level. The produced intervals can provide policymakers with more information and confidence. Furthermore,
various intervals can be generated at different confidence levels set by forecasters in advance, enabling decision-makers to formulate
policies or strategies based on different confidence levels.

Despite the advantages of interval forecasts, little attention has been paid to the application of interval forecasts to tourism
demand, with some exceptions such as Kim, Song, and Wong (2010), Kim, Wong, Athanasopoulos, and Liu (2011) and
Athanasopoulos, Hyndman, Song, and Wu (2011), among others. Kim et al. (2010) propose the bias-corrected bootstrap interval
forecast of an autoregressive time series, and their empirical results in tourism demand show that this technique has desirable small-
sample properties. Kim et al. (2011) compare tourism prediction intervals generated from alternative time series models, and they
show that most models produce satisfactory intervals in terms of coverage values and width. Athanasopoulos et al. (2011) compare
the coverage probabilities in tourism forecasting competition and demonstrate that the use of lower-frequency data tends to over-
estimate the coverage probabilities. Overall, interval forecasting remains an under-researched area in the tourism literature.

Tourism combination forecasting

Combination forecasting generates forecasts by combining the forecasts from a number of individual models using certain
weighting methods. A large body of research indicates that the combination technique may improve the accuracy of point forecasting
(see a review of Clemen, 1989). Some studies use combination forecasting technique in the tourism context, such as Shen, Li, and
Song (2008); Shen et al. (2011), Song et al. (2009) and Wong et al. (2007). Empirical evidence in tourism forecasting suggests that no
single model can generate the most accurate forecasts on all occasions (Song & Li, 2008; Wu et al., 2017). Combination forecasting
avoids the risk of forecasting failure caused by relying on a single inappropriate forecasting model (Wong et al., 2007). Song et al.
(2009) and Shen et al. (2011) demonstrate that the accuracy of combined forecasts is significantly higher than the average accuracy
of individual forecasts. Although combination techniques have been applied to tourism forecasting, these applications are limited to
combining point forecasts. Thus far, no study has explored how combined interval forecasts can be used in the tourism context.

Combination of interval forecasts

Combining interval forecasts provides not only a centre of intervals but also variability at certain confidence levels, and it is thus
complex. It is straightforward to produce a combined interval forecast by combining the lower limits and upper limits respectively,
yet this does not guarantee an interval with the correct probability (Timmermann, 2006). Therefore, we are unable to interpret
combined intervals in practice. This problem has two solutions. One is to apply the quantile regression averaging (QRA) method (Liu,
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Nowotarski, Hong, & Weron, 2017; Nowotarski & Weron, 2015), which provides a prediction interval by using quantile regression on
point forecasts from individual methods to effectively construct a combined interval with the correct probability. The other is to
derive the combined intervals from the combined density (Wallis, 2005). After obtaining the density function of each individual
forecast, these density functions can be combined to generate forecasting intervals for any required probability; in contrast, the QRA
method can only obtain an interval with a specific probability at a one-time combination. We therefore use the combined densities to
produce the intervals in this study.

A density forecast of a random variable at some future time is an estimate of the probability distribution of this variable's possible
future values; this estimate provides a complete description of the uncertainty associated with a prediction (Tay & Wallis, 2000).
Researchers have developed various weighting schemes to combine density forecasts. For instance, Hendry and Clements (2004)
advocate putting equal weights on all of the single interval forecasts involved. Granger and Jeon (2004) suggest a thick-modelling
approach that eliminates the m% worst performing forecast and then takes a simple average of the remaining forecasts. Garratt, Lee,
Pesaran, and Shin (2003) propose a Bayesian model averaging method that offers a means of weighting alternative models based on
density forecasts according to their posterior probabilities. Hall and Mitchell (2007) obtain ‘optimal’ weights based on past forecast
performance measured by minimizing the Kullback-Leibler information criterion (KLIC), which can measure the ‘distance’ between
two densities. Garratt, Mitchell, Vahey, and Wakerly (2011) apply recursive weights to density forecasts, which use the logarithmic
score to measure density performance. Billio, Casarin, Ravazzolo, and van Dijk (2013) propose a general distributional state space
representation of predictive densities and combination schemes that can obtain time-varying weights with non-linear filtering.

A number of studies identify the advantage of density forecasting combination. Kascha and Ravazzolo (2012) point out that
although combinations do not always outperform individual models, they are beneficial because they are more accurate overall and
provide insurance against inappropriate model selection, which is the same as point forecasting combination. Since the combination
of interval forecasts has not been examined in the field of tourism and hospitality and deserves attention (Wu et al., 2017), the current
study examines whether tourism forecasting accuracy can be improved by combining interval forecasts.

Forecasting performance assessment

A number of measures can be used to assess forecasting performance in the case of point forecasting, most of which measure the
distance between forecast values and real values. The most widely used measures include the mean absolute percentage error
(MAPE), the root mean square error (RMSE), the root mean square percentage error (RMSPE) and the mean absolute error (MAE) (Wu
et al., 2017).

An interval forecast produces a range instead of a single value, and its accuracy measurement thus cannot follow the same
method. The coverage rate and the interval width are often used to measure the accuracy of interval forecasts (Athanasopoulos et al.,
2011). The coverage rate is the percentage by which the real values fall in the prediction intervals. A coverage rate closer to the
nominal coverage rate suggests better model performance. The interval width is the length of the prediction intervals generated at a
certain confidence level. When the prediction intervals of two models produce the same coverage rates, the model with the narrower
width is considered to have better forecasting performance (Kim et al., 2011).

An ideal prediction interval contains a coverage rate close to the nominal coverage rate and a narrow width. However, in practice,
interval forecasts with superior coverage rates often have broader widths, which complicate the model choice. To consider both the
coverage rate and the interval width for interval forecasting assessment, a comprehensive measurement, Winkler score (Winkler,
1972), is used, which penalises for observations outside the constructed interval and rewards for narrow widths. This study is the first
to use the Winkler score to evaluate tourism interval forecasting performance.

Methodology

Individual forecasting models

Eight forecasting techniques that are widely used in the tourism demand forecasting literature are adopted in this study to
generate individual forecasts: four time series models (naïve, exponential smoothing (ES), seasonal autoregressive integrate moving
average (ARIMA) and structural time series (STS)) and four econometric approaches (autoregressive distributed lag (ADL), vector
autoregressive (VAR), error correction (EC) and time-varying parameter (TVP)) models. The selection of individual models aims to
cover a wide range of methods commonly applied in tourism forecasting with different merits. For example, the seasonal ARIMA
model addresses seasonality, the ES and STS models in state space form decompose a time series into trend and seasonal components,
the ADL model captures the long-term effect and dynamics of the demand system, the EC model focuses on the short-term effect, the
VAR model uses systematic estimation, the TVP model estimates time-varying parameters, and the naïve model is commonly used as
a benchmark in forecasting exercises (Li, Song, & Witt, 2005).

Naïve model

The naïve model states that future forecasts are simply equal to the recent available value. For yearly data, =y yt t 1, where y is the
tourism demand, y is its forecast and t refers to time. For data with seasonality, such as quarterly data, =y yt t s, where s is 4. In this
study, we use the naïve method with seasonality.
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ES model

An exponential smoothing (ES) model consists of a trend, a seasonal component and additive or multiplicative errors. Hyndman,
Koehler, Snyder, and Grose (2002) propose innovations state space models for exponential smoothing, which can be labelled as ETS
(・,・,・). Particularly, three components need to be specified: the error type (“A” or “M”), the trend type (“N”, “A” or “M”), and the
season type (“N”, “A” or “M”) where “N” stands for none, “A” stands for additive and “M” represents multiplicative. An advantage of
this ETS forecasting framework is that information criteria can be used for model selection. In our setting, models are selected by
minimizing Bayesian information criterion (BIC).

Seasonal ARIMA model

The seasonal ARIMA approach is based on the standard Box-Jenkins method, and includes seasonal autoregressive and seasonal
moving average structures. It is classified as a general-to-specific method in which all of the potential components are involved in the
first-step model and all of the significant terms remain through a stepwise process based on the BIC. The seasonal ARIMA (p,d,q)
(P,D,Q)s is given by

=B B B y B B( )(1 ) ( ) ( ) ( ) ,d s D
t

s
t (1)

where εt is the white noise with mean zero, B is the backshift operator, ϕ, θ, Φ and Θ are the polynomials of order p, q, P and Q,
respectively, s denotes season, d is the difference operator and D is the seasonal difference operator. We use the ‘auto.arima’ function
in the ‘forecast’ package in R to estimate the model.

STS model

The STS model proposed by Harvey (1989) consists of a stochastic trend, a seasonal term, an irregular component and a cyclical
component. The STS model is specified as

= + + +y µ ,t t t t t (2)

where μt is the local linear trend component, which is assumed to follow a random walk, ϕt represents the seasonal component, which
is defined to follow a stochastic specification (Vu & Turner, 2006), ψt is the cyclical component, which follows a trigonometric form
(Harvey & Jaeger, 1993), and εt is the irregular component. In this study, we use an STS model with explanatory variables (Cortés-
Jiménez & Blake, 2011), which is written as follows:

= + + + +
=

y µ x ,t t t t
i

k

i i t t
1

,
(3)

where xi, t is one of k explanatory variables. In this study, we construct the STS model according to Eq. (3) without the cyclical
component (Kim et al., 2011).

VAR model

VAR model is a stochastic process used to capture the linear interdependencies among multiple time series. It generalises the
univariate AR model by allowing more than one evolving variable. All of the variables in the VAR model join the model in the same
way: each has an equation interpreting its evolution based on its own lagged value, the lagged values of other variables and an error
term. The VAR model of order p is written as follows:

= + + …+ +Y x Y
y

,t
t
t

p t p t0 1
1
1 (4)

where Yt is the vector of endogenous variables, p is the lag order, Φi s are the constant matrices of the coefficients and εt∼NID(0,Σε).
In our setting, the lag order is 2 and the vector of endogenous variables includes tourist arrivals, own price and substitute price
variables.

ADL model

The estimation of a dynamic econometric model proposed by Hendry (1986) is known as the general-to-specific approach (Shen
et al., 2008; Wong et al., 2007). This method starts with a general ADL model:

= + + +
= = =

y x y ,t
j

k

i

p

j i j t i
i

p

i t i t0
1 0

, ,
1

j

(5)

where yt is the tourism demand variable, xj is the jth explanatory variable, p is the lag order of the dependent variable, pj is the lag
order of the jth regressor, βj,i and ϕi are coefficients and εt is white noise. After estimating the general ADL model, the most insig-
nificant variable is removed from the equation and the model is re-estimated. This process is repeated until the variables remaining in

G. Li, et al. Annals of Tourism Research 75 (2019) 363–378

366



the model are all statistically significant and their estimates have correct signs in line with economic theory.

EC model

The EC model uses the Engle and Granger two-stage approach (Engle & Granger, 1987). The first step is to estimate a long-run
cointegration regression model with the ordinary least squares method:

= + +
=

y x u ,t
i

k

i i t t0
1

,
(6)

where ut is the error term and βi is the ith coefficient.
In the second step, the long-run cointegration relationship is transformed into an EC procedure with the term

=
y xt

i

k

i i t1 0
1

, 1 , and the EC model takes the following form:
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= = = =
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where εt is the error term and ϕi and βis are coefficients.

TVP model

Different from the methods mentioned above, which assume that the coefficients of the variables are constant over time, the TVP
model allows coefficients to change over time. In this study the autoregressive version of TVP model is used and expressed in the state
space form

= + + +
= = +

+

y y x ,t t
i

p

i t t i
j p

p k

j t j t t0,
1

,
1

, ,
(8)

= + ,i t i t i t, , 1 , (9)

where p=2 in this study. The first equation is the measurement or system equation and the second is the transition or state equation.
The Kalman filter algorithm (Kalman, 1960) is used to estimate this model.

Interval combination technique

In this study, the combined density is used to obtain the intervals. The advantage of this method is that once a density function is
available, interval forecasts for any required probability can be obtained with the inverse function of the distribution function.

A density forecast of a random variable at some future time is an estimate of the probability distribution of the possible future
values of that variable. Wan, Song, and Ko (2016) highlight the importance of density forecasts and the associated evaluation tool. In
this study the forecast density functions for individual models are assumed to follow normal distribution, with point forecasts as the
means. To estimate the variances, all the data sample is split into a training set, a validation set and a test set. The variances of the
forecast density functions in the test set are estimated by the average squared difference between forecasts and actual values from the
validation set.

Consider N density forecasts of variable yt at time t, and denote these forecasts as gi,t. Then, the linear combination of density
forecasts is defined in the finite mixture:

=
=

f y w g y( ) ( ),t t
i

N

i i t t
1

,
(10)

where wi are a set of non-negative weights that sum to 1. In these individual density forecasts, mi, t is the mean and vi, t is the variance.
Further characteristics of combined density ft(yt) can be expressed by the following:

= =
=

E f y m w m[ ( )] ,t t t
i

N

i i t
1

,
(11)

= +
= =
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1

,
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(12)

Following Wallis (2005), we apply equal weights to the above functions:

=
=

f y
N

g y( ) 1 ( ),t t
i

N

i t t
1

,
(13)

G. Li, et al. Annals of Tourism Research 75 (2019) 363–378

367



= =
=

E f y m
N

m[ ( )] 1 ,t t t
i

N

i t
1

,
(14)

= +
= =

f y
N

v
N

m mVar[ ( )] 1 1 ( ) .t t
i

N

i t
i

N

i t t
1

,
1

,
2

(15)

With the combined distribution function ft(yt), we denote the quantile function as Qt(θ)= ft−1(θ). A central interval with con-
fidence level p is defined as [Qt(q/2),Qt(1− q/2)], where q=1− p. Given the difficulty of calculating the analytic integral of a
normal density function directly, we use the Taylor expansion to help determine the approximate value.

Forecasting accuracy measurement

In point forecasting, MAPE is used to measure the forecasting performance with the following formula:

= ×
=

MAPE
m

y y
y

1 | ^ |
100%.

t

m
t t

t1 (16)

In interval forecasting, the width, coverage rate and Winkler score are used to measure forecasting performance. Suppose that we
have m prediction intervals = …L U t m{[ , ], 1, , }t t for the m true future values of {yt, t=1, … ,m}, where Lt is the lower limit and Ut is
the upper limit. The width of an interval forecast (Wt) is defined as follows:

=W U L ,t t t (17)

while the coverage rate is written as

=
< <

C
L y U

m
#{^ ^ }

,t t t
(18)

where # is the frequency at which the condition inside the bracket is satisfied. The prediction interval whose true coverage rate is
close to the nominal coverage rate is preferred. When two prediction intervals have similar coverage rates, the one with a narrower
width is favoured.

In practice, the coverage rate and width may lead to controversial evaluation results. Therefore, the Winkler score, a compre-
hensive measure, is used to jointly assess the interval width and the coverage rate. For a central p×100% prediction interval of value
yt, the Winkler score is defined as follows:

= + >
+ <

W L y U
W L y p L y
W y U p U y

Winkler 2( )/(1 )
2( )/(1 ) .

t t t t

t t t t t

t t t t t (19)

The Winkler score gives a penalty if yt is outside the prediction interval (Hong & Fan, 2016), and a lower score indicates a better
prediction interval. This study is the first to introduce the Winkler score to tourism interval forecasting performance evaluation.

Particularly, when measuring the forecasting accuracy, MAPEs of point forecasts are calculated based on the original scale of the
tourism demand. But for interval forecasts, since forecasts of the tourism demand in natural logarithm is assumed normally dis-
tributed, and interval combination is based on these normal distributions, we measure interval forecasting accuracy based on the
natural logarithm form of the tourism demand instead of the original scales.

Data description and modelling process

This study focuses on Hong Kong's inbound tourism demand from its eight key source markets: mainland China, Taiwan, South
Korea, Japan, Macao, the Philippines, Singapore and the US. Fig. 1 shows the time series plots of natural log-transformed tourism
arrivals from eight source markets. In line with prior studies such as Song, Wong, and Chon (2003), own price, substitute price and
income are used as determinants of tourism demand in this study. The own price pit and substitute price pst are defined as

=p CPI /EX
CPI /EX

,it
HK HK

origin origin (20)

=
=

p w
CPI
EX

,st
j

j

j
j

1

4

(21)

where CPI and EX denote the customer price index and the exchange rate, respectively, and j denotes the jth substitute destination for
Hong Kong. Four substitute destinations are selected: South Korea, Japan, Macao and Singapore. wj is the share of tourist arrivals in
the jth substitute destination for the total tourist arrivals in these four countries. In each of the models using South Korea, Japan,
Macao and Singapore as source markets, the same country is excluded from the calculation of the substitute price variable for that
model. The income variable is measured by the real GDP index in the constant prices of these eight source markets. Seasonal dummies
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are added to capture the seasonal effects, and one-off event dummies are included to reflect the effects of SARS in 2003 and the
financial crisis in 2009. The sample covers the 1995Q1-2018Q2 period. All of the variables except the dummies are transferred to a
natural logarithm before the model estimation, and the rolling window method is used to produce both point and interval forecasts.

The individual model forecasting process follows the following steps. First, we use the training dataset (1995Q1-2008Q2) for
model estimation. We adopt an increasing rolling window to our training set to produce one-step-ahead forecasts for 2008Q3-2018Q2
(Wong et al., 2007). Second, the validation dataset (2008Q3-2013Q2) aims to compute variances for density forecasts. For example,
the residuals for the period of 2008Q3-2013Q2 are used to estimate variances for the density forecasts of 2013Q3. A rolling window is
adopted to our validation set until the variances for 2018Q2 are obtained. Finally, the test dataset (2013Q3-2018Q2) is used to
generate prediction intervals of individual models, and both 80% and 70% confidence levels are used for each model and each source
market. Following the same procedures, we further produce prediction intervals for two- to four-step ahead forecasting horizons. Due
to space constraints, only one- and four-step ahead results are presented in the following section.

Once the density functions of all individual models are forecast, all possible combinations for these density functions are con-
ducted for each source market from a two-model combination to an eight-model combination. Based on these combinations, Taylor's
expansion is used to calculate the approximation of prediction on intervals for each combining model.

Fig. 1. Time series plots for log-transformed tourist arrivals.
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Finally, the forecasting performance is evaluated. The performance of point forecasts is examined using MAPE and the interval
forecasting performance is examined using the interval width, coverage rate and Winkler score.

Empirical results

Point forecast combination

First, the combination based on point forecasts is conducted, and its performance is examined using MAPE values. The results are
shown in Table 1, where the point forecasting performance for the eight individual models and the combined forecasts for the eight
countries are reported. It is observed that the performances of these individual models vary across the eight source markets for both
one-step ahead and four-step ahead forecasting horizons. For example, the TVP model performs best for the China case, while the EC
model performs best for the Japan case.

Regarding point forecasting combination, to examine whether combination can improve the forecasting performance over single
models, the average MAPEs are compared between single model forecasts and combined forecasts, as shown in Table 1. It is observed
that for all eight source markets, the average MAPEs of the combined forecasts are lower than the average MAPEs of the single models
for all of the combination cases, which indicates that combination is an effective way to improve point forecasting accuracy on
average. Using the China case as an example, in the one-step ahead case, the average MAPEs for all of the combination forecasts range
from 4.24% to 5.22%; all of these values are lower than the average MAPE of the single models of 6.10%. Thus, combination can
improve point forecasting accuracy on average. We further calculate and compare the median MAPEs between single forecasts and
combined forecasts and obtain the same conclusion. This further verifies the effectiveness of combination in improving point fore-
casting performance. Due to space constraints the results for median MAPEs are omitted.

Table 1
MAPE values for single and combined forecasts (%).

China Japan Korea Macao Philippines Singapore Taiwan USA Average

One-step-ahead
Single models:
NAIVE 8.78 7.78 9.05 3.42 8.95 8.75 3.17 3.55 6.68
ES 6.14 8.16 11.34 5.62 11.82 7.84 5.22 8.92 8.13
ARIMA 4.27 5.84 8.41 4.29 7.06 8.41 2.24 2.91 5.43
STS 4.17 4.72 8.09 4.13 7.38 8.40 2.62 2.84 5.30
VAR 9.03 8.08 13.34 8.92 16.75 24.77 4.56 10.05 11.94
ADL 7.61 8.42 7.72 11.71 12.02 12.69 9.93 8.14 9.78
EC 5.12 4.61 7.83 4.96 11.07 6.94 3.81 8.51 6.61
TVP 3.66 10.02 11.49 3.44 12.34 12.12 3.76 6.82 7.96
Average 6.10 7.20 9.66 5.81 10.92 11.24 4.42 6.47 7.73

Average MAPEs of different combined forecasts:
Two-model 5.22 5.77 9.05 5.10 10.04 9.83 3.69 6.01 6.84
Three-model 4.83 5.21 8.82 4.77 9.78 9.35 3.38 5.86 6.50
Four-model 4.60 4.91 8.68 4.61 9.65 9.10 3.20 5.79 6.32
Five-model 4.47 4.71 8.59 4.54 9.59 8.98 3.09 5.75 6.22
Six-model 4.37 4.58 8.53 4.49 9.56 8.90 3.01 5.73 6.15
Seven-model 4.30 4.50 8.48 4.43 9.56 8.84 2.94 5.72 6.10
Eight-model 4.24 4.45 8.45 4.38 9.56 8.81 2.91 5.71 6.06

Four-step-ahead
Single models:
NAIVE 7.96 6.89 9.31 2.93 9.20 8.61 3.36 3.34 6.45
ES 17.13 7.76 10.59 4.24 12.53 7.37 5.25 7.22 9.01
ARIMA 10.60 12.05 13.09 17.82 11.93 16.41 3.74 2.89 11.07
STS 10.87 9.48 11.06 15.02 12.17 10.91 4.06 2.60 9.52
VAR 17.33 13.11 16.99 5.44 15.69 25.38 4.41 8.26 13.33
ADL 9.08 10.55 8.16 11.52 14.23 14.87 10.52 6.75 10.71
EC 16.05 6.46 12.53 4.20 17.05 8.04 4.17 11.56 10.00
TVP 6.75 10.35 17.48 3.53 16.05 22.97 4.15 6.06 10.92
Average 11.97 9.58 12.40 8.08 13.61 14.32 4.96 6.09 10.13

Average MAPEs of different combined forecasts:
Two-model 10.73 8.06 11.98 6.35 13.17 12.77 4.18 5.09 9.04
Three-model 10.21 7.52 11.83 5.40 13.04 12.21 3.88 4.65 8.59
Four-model 9.93 7.26 11.77 4.80 12.98 11.87 3.71 4.40 8.34
Five-model 9.76 7.10 11.74 4.40 12.94 11.65 3.61 4.25 8.18
Six-model 9.65 6.99 11.71 4.09 12.91 11.51 3.55 4.15 8.07
Seven-model 9.55 6.91 11.68 3.85 12.90 11.38 3.50 4.07 7.98
Eight-model 9.48 6.87 11.64 3.67 12.90 11.28 3.47 3.98 7.91
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Coverage rates and interval widths

Regarding the performance of interval forecasts, Tables 2 and 3 exhibit the averages of the coverage rates and interval widths
across the eight source markets for the eight individual models at 80% and 70% confidence levels, respectively. It is observed that for
one-step-ahead interval forecasts, the coverage rates are quite close to the nominal ones (with an average of 79.69% at the 80%
confidence level and 68.05% at the 70% confidence level). Regarding the four-step-ahead interval forecasts, the coverage rates are
generally quite below the nominal ones, with an average of 67.74% at the 80% confidence level, and 58.55% at the 70% confidence
level. It is also observed that the coverage rates of combined interval forecasts are higher than the average ones of single models for
both confidence levels and both forecasting horizons.

Table 3 reports the interval widths for forecasts of single models and combination forecasts. Although ideally, an interval forecast
with the coverage rate closest to the nominal one and with the narrowest width is preferred, the trade-off between coverage rates and
interval widths is often observed. For example, for the last columns in Tables 2 and 3, it is shown that combined intervals have
superior coverage rates over the average of single models, but generally have wider interval widths. Thus, using both measures to
evaluate the performance of interval forecasts may lead to controversial conclusions. To overcome this limitation, the Winkler score is
used which takes account of the merits of both coverage rates and interval widths.

Table 2
Coverage rates for single and combined interval forecasts (%).

80% confidence level 70% confidence level

One-step-ahead Four-step-ahead One-step-ahead Four-step-ahead

Single models:
NAIVE 82.50 82.35 75.63 75.74
ES 85.00 77.94 66.25 64.71
ARIMA 83.13 55.88 73.75 47.79
STS 86.88 69.85 73.75 58.09
VAR 74.38 66.91 59.38 59.56
ADL 73.13 63.24 58.13 52.21
EC 80.63 65.44 73.13 55.15
TVP 71.88 60.29 64.38 55.15
Average 79.69 67.74 68.05 58.55

Average coverage rates of different combined forecasts:
Two-model 82.81 72.53 75.83 66.57
Three-model 83.18 73.56 76.24 68.15
Four-model 82.55 73.63 76.54 68.69
Five-model 82.32 73.96 76.94 68.83
Six-model 82.01 73.90 77.19 68.80
Seven-model 81.41 73.35 77.19 68.75
Eight-model 81.88 78.13 78.13 67.65

Table 3
Interval widths for single and combined interval forecasts.

80% Confidence level 70% Confidence level

One-step-ahead Four-step-ahead One-step-ahead Four-step-ahead

Single models:
NAIVE 0.247 0.233 0.195 0.190
ES 0.272 0.267 0.217 0.218
ARIMA 0.195 0.232 0.154 0.189
STS 0.196 0.245 0.155 0.200
VAR 0.330 0.334 0.262 0.273
ADL 0.262 0.263 0.207 0.217
EC 0.219 0.247 0.174 0.202
TVP 0.221 0.233 0.176 0.191
Average 0.243 0.257 0.193 0.210

Average widths of different combined forecasts:
Two-model 0.241 0.258 0.203 0.223
Three-model 0.238 0.253 0.202 0.222
Four-model 0.234 0.248 0.201 0.220
Five-model 0.232 0.243 0.200 0.217
Six-model 0.230 0.239 0.199 0.214
Seven-model 0.228 0.235 0.198 0.211
Eight-model 0.227 0.232 0.197 0.209
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Winkler scores for interval forecast combination

Lower Winkler scores mean better performance of interval forecasts. As Tables 4 and 5 illustrate, when single models are con-
cerned, the single models with the best performance (or the lowest Winkler scores) vary over the eight source markets.

For each source market, the percentages of combined forecasts which outperform the corresponding individual component
models are further calculated. The results can be found in Tables 4-5. It is noted that all the combined interval forecasts either
outperform the best individual models or better than the worst single models across the eight source markets in most cases, indicating
that generally interval combination helps to avoid the worst forecasts. This technique is especially useful when one has no knowledge
about the performance of individual forecasting models. To further enhance this conclusion, we examine and compare the worst
forecasts (i.e., the highest Winkler scores) for single and combination models.

The part of “highest Winkler scores of single and combination models” in Tables 4-5 reports the highest Winkler scores for single
models and seven combination models. For example in Table 4, the figure in the second row of this part and the second column is
0.392, which means that among the 28 cases producing all of the possible combinations based on two models, the highest Winkler
score is 0.392. According to Tables 4-5, majority of the combination forecasts (from two-model combinations to eight-model com-
binations for all source markets and at both confidence levels and both forecasting horizons) outperform the single models when the
highest Winkler scores (the worst performance) are considered, with only a few exceptions noted with asterisks in the tables. In
practice, it is important to avoid the risk of severe forecast failures. This finding shows that combination forecasting is an effective
method for avoiding such failures.

After comparing the highest Winkler scores between the single-model and combination forecasts, a follow-up question arises: does
the forecast performance improve on average? In other words, if there is a pool of models available, will the performance expectation
be the same between choosing a single model and combining models? We calculate and compare the performance expectation
measured using the average Winkler scores for both single and combination models. The results are shown in the bottom of Tables 4
and 5. As expected, the average Winkler scores for majority of the combination cases (from the two- to eight-model combinations) are
lower than the corresponding average of the single models' Winkler scores when both confidence levels and both forecasting horizons
are concerned. We further obtain consistent findings when the medians of Winkler scores are used. They are not reported here due to
space constraints. The above findings confirm that the combination technique improves interval forecast performance.

Conclusion and implications

Conclusion and contribution

The key objectives of this study are to investigate how to combine interval forecasts and whether combination forecasting can
improve forecasting accuracy when interval forecasts are requested. To answer these questions, this study forecasts the Hong Kong
tourism demand of its eight key source markets: mainland China, Taiwan, Japan, Korea, Macao, Singapore, the Philippines, and the
US. Eight single models are used to produce initial interval forecasts: the naïve, ES, ARIMA, STS, ADL, VAR, EC and TVP models.
Because directly combining two intervals causes problems due to improper confidence levels for the combined interval, the com-
bination of interval forecasts at various forecasting horizons and at a given confidence level is achieved by combining the density
functions of the forecasts. Apart from the coverage rate and the width of the interval, the comprehensive measure Winkler score is
used to evaluate the forecasting accuracy of tourism demand. This study examines all of the possible combination options from two to
eight models.

This study discloses that combination is an effective way to produce accurate interval forecasts. Although combined intervals
cannot always outperform the best individual intervals, they generally outperform not only the worst single intervals but also the
average forecasting accuracy of the individual intervals involved, which suggests that the combination of interval forecasts can
reduce the risk of forecast failures and improve forecasting performance. Tourism practitioners would like to see the emergence of
new methodology in tourism demand forecasting, but ideally they are keener on applying robust methods to generate reliable
forecasts and avoiding wrong decisions which are based on failed forecasts. The preference to a robust method will be stronger when
practitioners aim to predict the trend of a new market with little prior information available. This study provides empirical support
for the advantage of applying interval forecast combination in tourism demand forecasting practice. As no single model can out-
perform the others in all situations, interval combination is a superior alternative because it can produce more accurate interval
forecasts.

There are two methodological contributions in this study. First, differing from previous tourism forecasting studies that focus on
point forecast combination, this study is the first to examine how to generate more accurate interval forecasts of tourism demand
using the combination technique. The findings provide guidelines for tourism forecasting practices in real life. Second, this study
introduces a comprehensive measurement, the Winkler score, to assess forecasting intervals. In the tourism literature, only the
coverage rate and interval width are used to measure interval forecasting performance. The Winkler score is superior because it
jointly considers these two measures by preferring narrow width and imposing a penalty when the real value is not covered by the
interval forecasts.

Implications and future research directions

The findings of this study provide useful practical implications. This study highlights that using only one single model to generate
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an interval forecast for an uncertain future is risky and that producing interval forecasts from a few single models and combining
these intervals are likely to lead to more accurate forecasts. Illustrations are provided for practical real-life applications.

More accurate interval forecasts of tourism demand provide supplemental information beyond point forecasts to support more
comprehensive evidence-based decision-making. For instance, accurate interval forecasts help governments with planning and in-
vestment on new tourism development projects or infrastructure. Accurate interval forecasts of tourism demand also benefit industry
practitioners, including airlines, hotels, restaurants, transportation and tour operators, for their strategy formulation, including
pricing, investment, marketing and revenue management. Knowing different intervals of the tourism demand forecasts with different
probabilities would help the above decision makers set up alternative scenarios and develop corresponding plans to deal with
different levels of uncertainties and risks.

The findings of this study suggest that further research is necessary. First, this study puts equal weights on single models to
combine intervals. Future research should explore different weighting methods and their effects on interval forecasting performance.
Second, more individual models, such as artificial intelligence-based models, should be included to produce interval forecasts, and
further combination, different origin-destination cases and different data frequencies should be examined and compared.
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